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some definitions: null and alternative hypothesis

• definition: a statistical hypothesis is a statement about population parameters

• the goal is to decide which of two complementary hypotheses is true:

null hypothesis H0 vs alternative hypothesis H1

• if θ denotes a population parameter, then the general format of the null and alternative
hypotheses is H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1

• examples:

− if θ represents the effect of a training program, we might be interested in H0 : θ = 0 against
H1 : θ ̸= 0

− if σ2 is the variance, we might be interested in understanding if volatility is too high defining
H0 : σ2 = σ2

0 against H1 : σ2 > σ2
0
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some definitions: rejection region

• definition: a hypothesis test is a rule that determines for which sample values the decision is to
reject or not H0

− we define a partition in the sample space X with two sets: R and Rc

− if x ∈ R, we elect to reject H0; if x ∈ Rc , we elect to not reject H0

− R is the rejection region and Rc is the acceptance region

− typically, a hypothesis test is specified in terms of a test statistic T (x), but this is not necessary

− R (and, consequently, Rc ) can be defined arbitrarily – but makes little sense to do so if we want a
test with good properties
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some definitions: power function

• definition: the power function of a hypothesis test with a given rejection region R is the function
of θ

β(θ) = Pθ(X ∈ R)

• be careful: the power function ̸= power of the test!

• the terminology is misleading: one should think the power function as the probability of rejecting
the null as a function of θ, regardless of whether the null is true or not
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some definitions: type-I and type-II errors

• there are two types of error a hypothesis test H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 might make

− rejecting the null when it is true (false positive): type I error occurs if θ ∈ Θ0 and x ∈ R

− not rejecting the null when it is false (false negative): type II occurs if θ ∈ Θ1 and x /∈ R

decision
not reject H0 reject H0

x /∈ R x ∈ R

truth H0 : θ ∈ Θ0 correct type I
H1 : θ ∈ Θ1 type II correct
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size and power function
• for each θ ∈ Θ0, β(θ) = Pθ(X ∈ R) represents the probability that the null hypothesis is rejected

while being true.

if θ ∈ Θ0 : β(θ) = Pθ(X ∈ R) = Pθ(type I error) = size at θ

• size varies with θ: we need an aggregate measure for the entire test over the set Θ0

• example: suppose Xi ∼ N(µ, 1) i.i.d. and that we test H0 : µ > 0 against H1 : µ ≤ 0. We elect to
make R = {x̄n ≤ 0}. The probability of x̄n being in the rejection region is completely different if
µ = 0.0001 or µ = 1000.

• definition: for 0 ≤ α ≤ 1, a test with power function β(θ) has size α if

sup
θ∈Θ0

β(θ) = α

whereas it has level α if supθ∈Θ0 β(θ) ≤ α.

• ideally, we would have size 0, which is equivalent to β(θ) = 0 for all θ ∈ Θ0, but life is never this
perfect
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power and power function

• for each θ ∈ Θ1, β(θ) = Pθ(X ∈ R) represents the probability that the null hypothesis is rejected
while being false.

if θ ∈ Θ1 : β(θ) = Pθ(X ∈ R) = 1 − Pθ(type II error) = power at θ

• as with size, power varies with θ, but we choose not to define an aggregate measure over θ ∈ Θ1
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power function for binomial probability

• example 1: let X ∼ Bin(5, p) and consider testing H0 : Θ0 = {p : 0 ≤ p ≤ 1/2} vs
H1 : Θ1 = {p : 1/2 < p ≤ 1}

• test 1: x ∈ R if and only if every observation is a success

− β1(p) = Pp(X = 5) = p5

− probability of type I error is pretty low for any p ≤ 1/2 ( 1
25 = 0.0312)

− probability of type II error is less than half only if p > 0.51/5 = 0.87

• test 2 x ∈ R if and only if X ∈ {3, 4, 5}

− β2(p) = Pp(X ∈ {3, 4, 5}) =
∑5

x=3
(5
x

)
px (1 − p)5−x

− the price we pay for a much smaller probability of type II error is a larger probability of type I error

9 / 82



R codes

test 1 : x ∈ R if and only if every observation is a success

test 2 : x ∈ R if and only if X ∈ {3, 4, 5}

r1 <- function(p){mean(rbinom(5000,5,p)==5)}

r2 <- function(p){mean(rbinom(5000,5,p)>=3)}

p <- seq(0,1,by=0.01)

plot(p,sapply(p,r1),type=’l’,ylab=’beta(p)’,xlab=’p’)

lines(p,sapply(p,r2),type=’l’,col=’red’)
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R codes

test 3 : rejects H0 if and only if X ∈ {2, 3, 4, 5}
test 4 : rejects H0 if and only if X ∈ {1, 5}
test 5 : rejects H0 if and only if X ∈ {1, 3, 5}
test 6 : rejects H0 if and only if X ∈ {1, 2}

r3 <- function(p){mean(rbinom(5000,5,p)>=2)}

r4 <- function(p){

v <- rbinom(5000,5,p)
mean((v==1)+(v==5))

}

r5 <- function(p){

v <- rbinom(5000,5,p)
mean((v==1)+(v==3)+(v==5))

}

r6 <- function(p){mean(rbinom(5000,5,p)<=2)}
12 / 82



R codes

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

be
ta

(p
)

r3  
r4
r5
r6

13 / 82



power function for Gaussian mean

• example 2: let X1, . . . ,Xn ∼ iid N(µ, 1) and consider testing H0 : µ ≤ 0 versus H0 : µ > 0. For
that test, we propose two rejection regions

test 1 : x ∈ R if and only if X̄n > 0

test 2 : x ∈ R if and only if X1 > 0

n <- 50

rGaussian1 <- function(mu){
vecTest <- matrix(0,5000,1)
for (i in 1:5000){vecTest[i,1] <- mean(rnorm(n,mean=mu,sd=1)) > 0}
mean(vecTest)

}

rGaussian2 <- function(mu){
vecTest <- matrix(0,5000,1)
for (i in 1:5000){vecTest[i,1] <-(rnorm(1,mean=mu,sd=1)) > 0}
mean(vecTest)

}
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power function for Gaussian mean

• example 2 (cont’d): rejection/acceptance region R are generally arbitrary; but it is unlikely that
tests with good properties would ensue

• let X1, . . . ,Xn ∼ iid N(µ, 1) and consider testing H0 : µ ≤ 100 versus H0 : µ > 100. For that test,
keep the two previous tests

test 1 : x ∈ R if and only if X̄n > 0

test 2 : x ∈ R if and only if X1 > 0

this test will have massive size distortions, and power very close to 1.

• in the next example, we conveniently standardize the test statistic.
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power function for Gaussian mean

• example 3: let X1, . . . ,Xn ∼ iid N(µ, 1) and consider testing H0 : µ ≤ µ0 versus H1 : µ > µ0 using
a rejection region X̄n > κ.

• we now aim to choose κ such that we know the probability type-I errors, i.e., we aim to devise a
test with a defined size

− in other words, α and n are fixed and we let power roam free

• we know that

β(µ) = Pµ

(
X̄n > κ

)
but we can’t calculate this probability because µ is not known, so we instead compute

β(µ) = Pµ

(
X̄n − µ

1/
√
n

>
κ− µ

1/
√
n

)
= P

(
Z >

κ− µ

1/
√
n

)
with Z ∼ N(0, 1).

• important to notice: we’ve manipulated β(µ) so that it depends on some known distribution (and
not on µ). In this way, we may forgo the simulations
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power function for Gaussian mean
• we may choose κ to match a test size from

β(µ) = P
(
Z >

κ− µ

1/
√
n

)
• since β(µ) is increasing with µ, maximum β(µ) = P

(
Z > κ−µ

1/
√
n

)
subject to H0 : µ ≤ µ0 is

achieved at µ = µ0

• so we select κ such that

P
(
Z >

κ− µ0

1/
√
n

)
= α

• from the standard normal tables, there is value zα such that P(Z > zα) = α. For example, if
α = 0.05, zα ≈ 1.64. Therefore,

κ− µ0

1/
√
n

= zα =⇒ κ = µ0 +
zα√
n

• the rejection region

R =

{
X : X̄n > µ0 +

zα√
n

}
was defined such that the statistical test has size α
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power function for Gaussian mean
• this is not necessarily the most convenient formulation: consider testing H0 : µ ≤ µ0 versus
H1 : µ > µ0 using a rejection region X̄n−µ0

1/
√
n

> c

β(µ) = Pµ

(
X̄n − µ0

1/
√
n

> c

)
= Pµ

(
X̄n − µ+ µ− µ0

1/
√
n

> c

)
= Pµ

(
X̄n − µ

1/
√
n

+
µ− µ0

1/
√
n

> c

)
= Pµ

(
X̄n − µ

1/
√
n

> c − µ− µ0

1/
√
n

)
= P

(
Z > c +

µ0 − µ

1/
√
n

)
with Z ∼ N(0, 1)

• important:

− β(µ) is increasing in µ, with limµ→−∞ β(µ) = 0, limµ→∞ β(µ) = 1

− if P(Z > c) = α, then β(µ0) = α, the size of the test

− to control for size α, we choose c = zα

− power depends on the distance µ0 − µ

− power increases to 1 as n → ∞
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power function for Gaussian mean

• that is, we have defined the rejection region

R =

{
X :

X̄n − µ0

1/
√
n

> zα

}
=

{
X : X̄n > µ0 +

zα√
n

}
as we had before.

mu0 <- 1

c <- 1.64485

rGaussian2 <- function(mu){

vecTest <- matrix(0,5000,1)

for (i in 1:5000){vecTest[i,1] <-
(sqrt(n)*(mean(rnorm(n,mean=mu,sd=1))-mu0)) > c}

mean(vecTest)

}
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c = 1.64485, α = 0.05
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c = −0.25334, α = 0.60
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power function for Gaussian mean

• example 4: suppose now that the probability of type I error must not exceed 0.10 and that of type
II error must not exceed 0.20 if µ ≥ µ0 + 1

• we now aim to choose n such that we know the probability type-I and type-II errors for a given
effect size

− typical application: determination of sample sizes in RCTs.

• using a test that rejects H0 : µ ≤ µ0 if
√
n(X̄n − µ0) > c

β(µ) = P
(
Z > c +

µ0 − µ

1/
√
n

)
=

{
P(Z > c) = 0.1 if µ = µ0

P(Z > c −
√
n) = 0.8 if µ = µ0 + 1

• from P(Z > c) = 0.1, we get that c ≈ 1.28

• from P(Z > c −
√
n) = 0.8, we get that

c −
√
n ≈ −0.84 ⇒ n ≈ (c + 0.84)2 ≈ 4.49

or n ≥ 5
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power function for Gaussian mean

• example 5: let X1, . . . ,Xn be a random sample from N(θ, σ2), σ2 known. A test for H0 : θ = θ0

against H1 : θ ̸= θ0 rejects H0 if |X̄n − θ0|/(σ/
√
n) > c.

the experimenter desires a type-I error of probability 0.05 and a maximum type-II error of 0.25 at
θ = θ0 + σ. What values of n and c achieves this?

• we should first find the power function

β(θ) = Pθ

(
|x̄n − θ0|
σ/

√
n

> c

)
= 1 − Pθ

(
|x̄n − θ0|
σ/

√
n

≤ c

)
= 1 − Pθ

(
−c ≤ x̄n − θ + θ − θ0

σ/
√
n

≤ c

)
= 1 − Pθ

(
−c − θ − θ0

σ/
√
n

≤ x̄n − θ

σ/
√
n

≤ c − θ − θ0

σ/
√
n

)
= 1 − Pθ

(
−c +

θ0 − θ

σ/
√
n

≤ Z ≤ c +
θ0 − θ

σ/
√
n

)
= 1 −

[
Φ

(
c +

θ0 − θ

σ/
√
n

)
− Φ

(
−c +

θ0 − θ

σ/
√
n

)]
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power function for Gaussian mean

• by hypothesis,

0.05 = β(θ0) = 1 − [Φ(c)− Φ(−c)]

= 1 − [Φ(c)− 1 +Φ(c)] = 2 − 2 · Φ(c)
0.025 = 1 − Φ(c)

and c = 1.96.

• power at θ = θ0 + σ is

.75 ≤ β(θ0 + σ) = 1 −
[
Φ

(
c +

−σ

σ/
√
n

)
− Φ

(
−c +

−σ

σ/
√
n

)]
= 1 +Φ(−c −

√
n)− Φ(c −

√
n)

= 1 +Φ(−1.96 −
√
n)− Φ(1.96 −

√
n)

≈ 1 − Φ(1.96 −
√
n)

since Φ(−.675) ≈ 0.25, then 1.96 −
√
n = −.675, and so n = 6.943 ≈ 7.
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power function for Gaussian mean
• example 6: let X1, . . . ,Xn be a random sample from N(θ, σ2), σ2 unknown. A test for H0 : θ = θ0

against H1 : θ ̸= θ0 rejects H0 if |X̄n − θ0|/(s/
√
n) > c, where s =

√
s2 =

√
1

n−1

∑n
i=1(Xi − X̄n)2.

the experimenter desires a type-I error of probability 0.05 and a maximum type-II error of 0.25 at
θ = θ0 + σ. What values of n and c achieves this?

• we should adjust the power function

β(θ) = Pθ

(
|x̄n − θ0|
s/
√
n

> c

)
= 1 − Pθ

(
|x̄n − θ0|
s/
√
n

≤ c

)
= 1 − Pθ

(
−c ≤ x̄n − θ + θ − θ0

s/
√
n

≤ c

)
= 1 − Pθ

(
−c − θ − θ0

s/
√
n

≤ x̄n − θ

s/
√
n

≤ c − θ − θ0

σ/
√
n

)
= 1 − Pθ

(
−c +

θ0 − θ

s/
√
n

≤ t ≤ c +
θ0 − θ

s/
√
n

)
= 1 −

[
F

(
c +

θ0 − θ

s/
√
n

)
− F

(
−c +

θ0 − θ

s/
√
n

)]
where t ∼ tn−1 with cdf F (·).

26 / 82



power function for Bernoulli with CLT

• example 7: for a random sample X1, . . . ,Xn of Bernoulli(p) variables, it is desired to test
H0 : p = 0.49 against H1 : p = 0.51. Use the central limit theorem to determine, approximately,
the sample size needed so that the two probabilities of error are both about 0.01. Use a test
function that rejects H0 if

∑n
i=1 Xi is large.

• solution: by the CLT,

Z =

∑
Xi − np√

np(1 − p)

d−→ N(0, 1)

a test that rejects H0 if
∑

Xi > c has

P

(
Z >

c − n(.49)√
n(.49)(.51)

)
= 0.01 and P

(
Z >

c − n(.51)√
n(.49)(.51)

)
= 0.01

therefore

c − n(.49)√
n(.49)(.51)

= 2.33 and
c − n(.51)√
n(.49)(.51)

= −2.33

solving these equations gives n = 13.567 and c = 6783.5.
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previous examples

• in most previous examples, we’ve used rejection regions of the format

R =
{
X : T (X ) > κ

}
which is an interval (κ,∞) for a sufficient statistic T (X ).

− example 2: R =
{
X : X̄n > 0

}
− example 3: R =

{
X : X̄n > zα√

n+µ0

}
− example 4: R =

{
X :

√
n(X̄n − µ0) > c

}
− example 5: R =

{
X : |X̄n − θ0|/(σ/

√
n) > c

}
− example 6: R =

{
X :

∑
Xi "large"

}
• we are going to see that rejection regions of this format are well-grounded by theory
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likelihood ratio test

• it is a very general method of finding acceptance/rejection regions, virtually always applicable and
optimal in some sense that we will discuss later

• definition: the LR test for H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is a test with a rejection region of the
form R = {x : λ(x) ≤ c}, where 0 ≤ c ≤ 1 and

λ(x) =
supθ∈Θ0 ℓ(θ|x)
supθ∈Θ ℓ(θ|x) =

ℓ(θ̂0|x)
ℓ(θ̂|x)

• if the restriction is not binding, the constrained maximization ℓ(θ̂0|x) will be the same as the
unconstrained maximization ℓ(θ̂|x) and λ(x) = 1

• for now, think c as a fixed constant. We will soon see what that choice entails!
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LR test for the Gaussian mean

• example 1: let (X1, . . . ,Xn) be a random sample from a N(µ, 1) population and consider testing
H0 : µ = µ0 versus H1 : µ ̸= µ0, then

λ(x) =
ℓ(µ0|x)
ℓ(x̄n|x)

=
(2π)−n/2 exp

[
−
∑n

i=1(xi − µ0)
2/2
]

(2π)−n/2 exp
[
−
∑n

i=1(xi − x̄n)2/2
]

= exp

[
−
∑n

i=1(xi − µ0)
2 −

∑n
i=1(xi − x̄n)

2

2

]
= exp

[
−n(x̄n − µ0)

2

2

]
,

and for λ(x) = c,

ln c = −n(x̄n − µ0)
2

2
⇒ (x̄n − µ0)

2 = −2(ln c)/n

yielding a rejection region

{x : λ(x) ≤ c} =
{
x : |x̄n − µ0| ≥

√
−2(ln c)/n

}
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size of a LR test

• in general, to derive a size α LR test that rejects the null H0 : θ ∈ Θ0 if λ(x) ≤ c, we choose c
such that supθ∈Θ0 Pθ(λ(x) ≤ c) = α

• example 1 (cont’d): let X1, . . . ,Xn ∼ iid N(µ, 1) and consider testing H0 : µ = µ0 using a LR test
that rejects if |x̄n − µ0| ≥

√
−2(ln c)/n. Then

P
(
|x̄n − µ0| ≥

√
−2(ln c)/n

)
= P

(
|x̄n − µ0|
1/

√
n

≥
√

−2(ln c)
)

= α

and since x̄n−µ0
1/

√
n
∼ N(0, 1) we can choose c such that

√
−2(ln c) yields the probability above

being equal to α. This will be obtained at
√

−2(ln c) = zα/2, which implies

c = exp(−z2
α/2/2)
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LR test for the exponential distribution

• example 2: let (X1, . . . ,Xn) be a random sample from an exponential population with pdf

f (xi |θ) =

{
e−(xi−θ) xi ≥ θ

0 xi < θ

so the likelihood function is

f (x |θ) =

{
e−(

∑
xi−nθ) x(1) ≥ θ

0 x(1) < θ

and consider testing H0 : θ ≤ θ0 versus H1 : θ > θ0

• if x(1) ≥ θ, ℓ(θ|x) =
∏n

i=1 f (xi |θ) is an increasing function of θ. Then unrestricted maximum is
obtained at θ̂ = x(1) with maximum

ℓ(θ̂|x) = ℓ(x(1)|x) = e−(
∑

xi−nx(1))
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LR test for the exponential distribution
• now for the restricted maximum ℓ(θ̂0|x)

− if x(1) ≤ θ0, then restriction is not binding and ℓ(θ̂0|x) = ℓ(θ̂|x)

− if x(1) > θ0, then θ̂0 = θ0 and ℓ(θ0|x) = e−(
∑

xi−nθ0)

• the likelihood test statistic is

λ(x) =

{
1 x(1) ≤ θ0

e−n(x(1)−θ0) x(1) > θ0
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LR test for the exponential distribution
• therefore, a test that rejects H0 if λ(X ) ≤ c is such that

e−n(x(1)−θ0) ≤ c ⇒ −n(x(1) − θ0) ≤ ln c ⇒ x(1) ≥ θ0 −
ln c

n

rejection region {x : λ(x) ≤ c} =
{
x : x(1) ≥ θ0 − (ln c)/n

}

• now find c that matches a desired size α. General fact:

P (Xi ≤ k) =

∫ k

θ0

e−(x−θ0)dx =
[
−e−(x−θ0)

∣∣∣k
θ0

= 1 − e−(x−θ0)

therefore the probability that all X1, . . . ,Xn are greater than k is

P
(
X(1) ≥ k

)
= e−n(k−θ0)

• in the test, k = θ0 − (ln c)/n, so we must choose c such that

e−n(θ0−(ln c)/n−θ0) = α

which just implies that c = α.
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sufficient statistics are sufficient for LR tests

• is it a coincidence that likelihood ratio tests on the normal and exponential depended on sufficient
statistics (respectively, x̄n and x(1))?

• if T (X ) is a sufficient statistic for θ with pdf/pmf g(t|θ), then LR tests based on T and its
likelihood function ℓ∗(θ|t) = g(t|θ) should be as good as LR tests based on ℓ(θ|x)

• theorem (equivalence): λ∗
(
T (x)

)
= λ(x) for every x in the sample space if T (X ) is a sufficient

statistic for θ

• proof: it follows from the factorization theorem that

λ(x) =
supθ∈Θ0 ℓ(θ|x)
supθ∈Θ ℓ(θ|x) =

supθ∈Θ0 g
(
T (x)|θ

)
h(x)

supθ∈Θ g
(
T (x)|θ

)
h(x)

=
supθ∈Θ0 ℓ∗

(
θ|T (x)

)
supθ∈Θ ℓ∗

(
θ|T (x)

) = λ∗
(
T (x)

)
■
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nuisance parameters do not annoy so much

• likelihood tests are also convenient if there are nuisance parameters, that is to say, parameters for
which we have no inferential interest

• they do not affect the LR test construction method, though their presence might result in a
different test

• example: suppose X1, . . . ,Xn ∼ iid N(µ, σ2) and that we wish to test H0 : µ ≤ µ0 against
H1 : µ > µ0

λ(x) =
maxµ≤µ0,σ2≥0 ℓ(µ, σ

2|x)
maxµ∈R,σ2≥0 ℓ(µ, σ2|x)

=
maxµ≤µ0,σ2≥0 ℓ(µ, σ

2|x)
ℓ(x̄n, σ̂2|x)

=

{
1 if x̄n ≤ µ0
ℓ(µ0,σ̂

2|x)
ℓ(x̄n,σ̂2|x) if x̄n > µ0
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goal: fill out this table

H0 H1 UMP test? example of R
µ = µ0 µ = µ1

µ = µ0 µ > µ1

µ ≤ µ0 µ > µ0

µ = µ0 µ ̸= µ0
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most powerful tests
• general principle: a good test should have for a given probability of type-I error the smallest

possible probability of type-II error

• definition: unbiased tests are more likely to reject H0 if the null is false than if it is true, and
hence their power functions are such that β(θ1) ≥ β(θ0) if θ0 ∈ Θ0 and θ1 ∈ Θ1

(un)biased tests here?
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most powerful tests

• definition: let C be a class of tests for H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, then a test in C with power
function β(θ) is a uniformly most powerful class C test if β(θ) ≥ β̃(θ) for every θ ∈ Θ1 and every
β̃(θ) that is a power function of a test in class C

• we typically consider the class C of all level α tests, because we have to control anyway the
probability of type I error

which one is most powerful?
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Neyman-Pearson lemma

• theorem (Neyman-Pearson lemma) (CB 8.3.12): consider testing H0 : θ = θ0 versus H1 : θ = θ1,
where the pdf/pmf corresponding to θi is f (x |θi ) for i = 0, 1 using a test with rejection region R
such that

x ∈ R if f (x |θ1) > kf (x |θ0)

x ∈ Rc if f (x |θ1) < kf (x |θ0)

for some k ≥ 0, and Pθ0(X ∈ R) = α, then

(i) (Sufficiency) such a test is a UMP level α test

(ii) (Necessity) if there exists such a test, then every UMP level α test is a size α test

(iii) (Necessity) every UMP level α test has a rejection region of the above form, except perhaps on a set
A of null measure under θ0 and θ1: Pθ0 (X ∈ A) = Pθ1 (X ∈ A) = 0

• remember: for 0 ≤ α ≤ 1, a test with power function β(θ) has size α if

sup
θ∈Θ0

β(θ) = α

whereas it has level α if supθ∈Θ0 β(θ) ≤ α
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Neyman-Pearson lemma

• proof (i): let ϕ(x) denote the test function of the Neyman-Pearson test, taking value 1 if x ∈ R
and zero if x ∈ Rc , and ϕ̃(x) any other level α test function 0 ≤ ϕ̃(x) ≤ 1

• the Neyman-Pearson rejection region implies that, for every sample point x ,

0 ≤
[
ϕ(x)− ϕ̃(x)

][
f (x |θ1)− kf (x |θ0)

]
and hence

0 ≤
∫ [

ϕ(x)− ϕ̃(x)
][
f (x |θ1)− kf (x |θ0)

]
dx

= β(θ1)− β̃(θ1)− k
[
β(θ0)− β̃(θ0)

]
= β(θ1)− β̃(θ1)− k

[
α− β̃(θ0)

]
≤ β(θ1)− β̃(θ1)

for k ≥ 0 given that α− β̃(θ0) ≥ 0, hence β(θ1) ≥ β̃(θ1). That is, the NP test has greater power
than any other test. ■
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Neyman-Pearson lemma

• proof (ii): let now ϕ̃(x) denote any UMP level α test function and note that, by sufficiency, ϕ(x) is
also UMP level α test. Because ϕ and ϕ̃ are both UMP tests, β(θ1) = β̃(θ1), it then follows from

β(θ1)− β̃(θ1)− k
[
β(θ0)− β̃(θ0)

]
≥ 0

with k > 0 that −k
[
β(θ0)− β̃(θ0)

]
≥ 0 ⇒ β(θ0)− β̃(θ0) ≤ 0. Then

0 ≤ α− β̃(θ0) = β(θ0)− β̃(θ0) ≤ 0

and hence β̃(θ0) = α and ϕ̃ is in fact a size α test.

• proof (iii): this implies that

β(θ1)− β̃(θ1)︸ ︷︷ ︸
=0

−k
[
β(θ0)− β̃(θ0)

]︸ ︷︷ ︸
=0

=

∫ [
ϕ(x)− ϕ̃(x)

][
f (x |θ1)− kf (x |θ0)

]
dx

which implies only if ϕ̃ has the same rejection region of the Neyman-Pearson test, except on a set
A with

∫
A
f (x |θi ) dx = 0,∀i = 1, 2. ■
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example

• example 1 (CB 8.20): let X be a random variable with distribution under H0 and H1 given by

x 1 2 3 4 5 6 7
f (x |H0) 0.01 0.01 0.01 0.01 0.01 0.01 0.94
f (x |H1) 0.06 0.05 0.04 0.03 0.02 0.01 0.79

use the Neyman-Pearson lemma to find the most powerful test for H0 against H1 with size
α = 0.04. Compute the probability of type-II error.

• solution: by the NP lemma, we should define the rejection region

x ∈ R if f (x |θ1) > kf (x |θ0)

that is, f (x|θ1)
f (x|θ0)

> k.

x 1 2 3 4 5 6 7
f (x|H1)
f (x|H0)

6 5 4 3 2 1 0.84

so rejecting for large values of k corresponds to small values of x . A test with size α = 0.04 is
such that P(X ≤ c|H0) = 0.04, which is achieved at c = 4. The type-II error is
P(X ∈ {5, 6, 7}|H1) = .82.
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UMP test for the binomial probability
• example 2: let X ∼ Bin(2, p) and consider testing H0 : p = 1/2 against H1 : p = 3/4 using the

pmf ratios

f
(
0|p = 3

4

)
f
(
0|p = 1

2

) =
1
4

1
4

1
2

1
2

=
1
4

;
f
(
1|p = 3

4

)
f
(
1|p = 1

2

) =
2 1

4
3
4

2 1
2

1
2

=
3
4

;
f
(
2|p = 3

4

)
f
(
2|p = 1

2

) =
3
4

3
4

1
2

1
2

=
9
4

• if we choose...

− k > 9
4 yields the UMP with level α = 0

− 3
4 < k < 9

4 , the test that rejects H0 if X = 2 is UMP with level

α = P
(
X = 2|θ =

1
2

)
=

1
4

− 1
4 < k < 3

4 , the test that rejects H0 if X = {1, 2} is UMP with level

α = P
(
X = 1 or 2|θ =

1
2

)
=

3
4

− k < 1
4 yields the UMP with level α = 1
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how about sufficiency?

• corollary of NP lemma (CB 8.3.13): suppose T (X ) is sufficient for θ, with pdf/pmf g(t|θi )
corresponding to θi (i = 0, 1), then any test based on T (X ) with rejection region S such that

t ∈ S if g(t|θ1) > kg(t|θ0)

t ∈ Sc if g(t|θ1) < kg(t|θ0)

for some k ≥ 0, where Pθ0

(
T (x) ∈ S

)
= α, is a UMP level α test.

• proof: in terms of the original sample X , the test based on T (X ) has rejection region
R = {x : T (x) ∈ S} such that

x ∈ R if f (x |θ1) = g
(
T (x)|θ1

)
h(x) > kg

(
T (x)|θ0

)
h(x) = kf (x |θ0)

x ∈ Rc if f (x |θ1) = g
(
T (x)|θ1

)
h(x) < kg

(
T (x)|θ0

)
h(x) = kf (x |θ0)

and Pθ0(X ∈ R) = Pθ0

(
T (X ) ∈ S

)
, so it is also a UMP level α test by the Neyman-Pearson

lemma. ■
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UMP test for the normal mean

• example 3: let X1, . . . ,Xn ∼ iid N(µ, 1) and consider testing H0 : µ = µ0 against H1 : µ = µ1, with
µ0 > µ1. We had that

f (x |µ, σ2) = (2πσ2)−n/2 exp

{
−
∑n

i=1(xi − x̄n)
2 + n(x̄n − µ)2

2σ2

}
so, applying the NP lemma,

f (x |µ1, 1)
f (x |µ0, 1)

= exp

{
n(x̄n − µ0)

2 − n(x̄n − µ1)
2

2σ2

}
> k

so that (x̄n − µ0)
2 − (x̄n − µ1)

2 > 1
n
2σ2 ln k. We need to isolate x̄n:

(x̄n − µ0)
2 − (x̄n − µ1)

2 = x̄2
n − 2x̄nµ0 + µ2

0 − x̄2
n + 2x̄nµ1 − µ2

1

= −2x̄nµ0 + µ2
0 + 2x̄nµ1 − µ2

1

and given that µ1 − µ0 < 0, the rejection region is of the format

x̄n <
1
n
2σ2 ln k − µ2

0 + µ2
1

2(µ1 − µ0)
⇐⇒ x̄n < c
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UMP test for the normal mean

• example 3 (cont’d): for µ0 = 0, n = 100 and σ2 = 1, this function looks like

0 20 40 60 80 100

−
0.

60
−

0.
55

−
0.

50
−

0.
45

k

xb
ar

mu=−1     
mu=−1.1  

equivalent to say that, for any k, there is a c such that x̄n < c. This means that a test with
rejection region

x̄n < c = θ0 −
σzα√
n

is the UMP level α test.
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composite hypothesis

• H0 and H1 in the Neyman-Pearson lemma are simple hypotheses in that they specify only one
possible distribution for sample X , i.e., H0 and H1 are singletons.

• composite hypotheses: in most realistic problems, the hypotheses of interest specify more than
one possible distribution for the sample

one-sided tests: H0 : µ ≤ µ0 vs H1 : µ > µ0

two-sided tests: H0 : µ = µ0 vs H1 : µ ̸= µ0

• is the Neyman-Pearson lemma applicable? We shall defer this question to when we talk about
union-intersection tests.
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one-sided tests

• a large class of problems that admit UMP level α tests involve one-sided hypotheses and
pdfs/pmfs with the monotone LR property

• definition: a family of pdfs/pmfs {g(t|θ) : θ ∈ Θ} for a univariate random variable T with
parameter θ ∈ R has a monotone likelihood ratio if for every θ2 > θ1, g(t|θ2)/g(t|θ1) is a
monotone function of t on {t : g(t|θ1) > 0 or g(t|θ2) > 0}

• interestingly, any exponential family with g(t|θ) = h(t)c(θ) exp {w(θ)t} has an MLR if w(θ) is
nondecreasing

• theorem (Karlin-Rubin) (CB 8.3.17): consider testing H0 : θ ≤ θ0 versus H1 : θ > θ0 using a
sufficient statistic T whose pdf/pmf satisfies the MLR property, then the UMP level α test rejects
the null if T > t0 with Pθ0(T > t0) = α.
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one-sided tests

• example: X1, . . . ,Xn i.i.d. standard normal. Consider testing H′
0 : θ ≥ θ0 versus H′

1 : θ < θ0.

• since X̄n is sufficient and distribution has a monotone likelihood ratio, we can apply the
Karlin-Rubin theorem which states that we should reject the null if

x̄n < θ0 −
σzα√
n

and the power function is

β(θ) = Pθ

(
X̄n < θ0 −

σzα√
n

)
which is a decreasing function of θ. The value α is given by

sup
θ≥θ0

β(θ) = β(θ0) = α
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R codes: computations with UMP tests

• example: let {X1, . . . ,Xn} ∼ N(µ, σ2) i.i.d. with σ2 known, and consider testing H0 : µ ≤ 0
against H1 : µ > 0.

− test 1: take the test statistic X̄n−µ0
σ/

√
n

> c, where c = zα, with rejection region

R1 =

{
X :

X̄n − µ0

σ/
√
n

> zα

}
=

{
X : X̄n > µ0 + σ

zα√
n

}
which is the UMP test of level α.

− test 2: using only the first 5 observations, also with level α

R2 =

{
X :

X̄5 − µ0

σ/
√

5
> zα

}
=

{
X : X̄5 > µ0 + σ

zα√
5

}
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R codes: computations with UMP tests
• test 3:

R3 =

{
X :

n∑
i=1

X 2
i

σ2 > κ if X̄n > 0

}
and we need to find κ such that the probability of rejecting is α.

P(X ∈ R3) = P

{
n∑

i=1

X 2
i

σ2 > κ

∣∣∣∣∣ X̄n > 0

}
· P
(
X̄n > 0

)
while

P
(
X̄n < 0

)
= P

(√
n
X̄n − µ

σ
< −

√
n
µ

σ

)
= P

(
Z <

√
n
µ

σ

)
given that

√
n X̄n−µ

σ
∼ N(0, 1). Conditional of X̄n > 0,

∑n
i=1

X2
i

σ2 ∼ χ2
n from the χ2

n distribution, so

we can find a κ = qα∗ such that P
(∑n

i=1
X2
i

σ2 < qα∗

)
= α∗.

• taking µ = 0,

P(X ∈ R3) = 0.5(1 − α∗) = α =⇒ α∗ = 1 − 2α
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R codes: computations with UMP tests

n <- 500
sigma2 <- 1
alpha <- 0.05
mu <- 0
test1 <- function(x){

TS <- sqrt(n)*mean(x)/sqrt(sigma2)
testOutcome <- (TS > qnorm(1-alpha))

}
test2 <- function(x){

TS <- sqrt(5)*mean(x[1:5])/sqrt(sigma2)
testOutcome <- (TS > qnorm(1-alpha))

}
test3 <- function(x){

TS <- sum(xˆ2/sigma2)
testOutcome <- (TS > qchisq(1-2*alpha,n))
if (mean(x) < 0) {testOutcome=0}
testOutcome

}
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R codes: computations with UMP tests

testRejFreq <- function(mu){
testRej <- matrix(0,5000,3)
for (i in 1:5000){

x <- rnorm(n,mean=mu,sd=sqrt(sigma2))
testRej[i,1] <- test1(x)
testRej[i,2] <- test2(x)
testRej[i,3] <- test3(x)

}
testRejF <- colMeans(testRej)

}
mu <- seq(-1,2.5,by=0.1)
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R codes: computations with UMP tests

table: rejection frequencies

n = 50
µ = 0 µ = 0.1 µ = 0.2 µ = 0.5 µ = 1

test 1 0.0472 0.1706 0.4078 0.9702 1.0000
test 2 0.0444 0.0714 0.1168 0.3094 0.7284
test 3 0.0478 0.0840 0.1376 0.4570 0.9916

n = 500
µ = 0 µ = 0.1 µ = 0.2 µ = 0.5 µ = 1

test 1 0.0534 0.7218 0.9986 1.0000 1.0000
test 2 0.0484 0.0800 0.1214 0.3060 0.6436
test 3 0.0500 0.1376 0.2576 0.9872 1.0000
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R codes: computations with UMP tests

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mu

po
w

er

t1  
t2  
t3  
n=500
n=50

56 / 82



Contents
1. basic notions in hypothesis testing

1.1 statistical hypothesis

2. finding and evaluating tests

2.1 likelihood ratio test

2.2 most powerful tests

2.3 restricting the class of UMP test

2.4 intersection-union and union-intersection tests

2.5 p-values

3. inference and set estimation

3.1 inverting a test statistic

3.2 evaluating interval estimators and optimality

4. exercises

56 / 82



summary so far

• summary of results so far

H0 H1 UMP test? example of R
µ = µ0 µ = µ1 Neyman-Person lemma x̄n < c
µ = µ0 µ > µ1 (deferred)
µ ≤ µ0 µ > µ0 Karlin-Rubin theorem x̄n < c
µ = µ0 µ ̸= µ0 explore now
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UMPU tests

• if there is no UMP level α test within the class of all tests, we might try to find a UMP level α
test within the class of unbiased tests.

• the next example shows that it is not trivial to find an UMP test within the class of α-sized tests.

• example: let X1, . . . ,Xn ∼ N(µ, σ2) i.i.d. with σ2 known, and consider testing H0 : µ = µ0 versus
H1 : µ ̸= µ0.

− test 1: rejects H0 if X̄n < µ0 − σzα√
n

. The power function is for the test with size α is

β1(µ) = Pµ

(
X̄n < µ0 −

σzα√
n

)
= Pµ

(
X̄n − µ < µ0 − µ−

σzα√
n

)
= Pµ

(
X̄n − µ

σ/
√
n

< −zα +
µ0 − µ

σ/
√
n

)
= P

(
Z > zα −

µ0 − µ

σ/
√
n

)
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UMPU tests

• example (cont’d): test 2: rejects H0 if X̄n > µ0 +
σzα√

n

β2(µ) = P
(
Z > zα +

µ0 − µ

σ/
√
n

)
and take a point µ1 < µ0

β1(µ1) = P
(
Z > zα − µ0 − µ1

σ/
√
n

)
> P

(
Z > zα +

µ0 − µ1

σ/
√
n

)
= β2(µ1)

because µ0 − µ1 > 0. Now, if µ2 > µ0, we will have that µ0 − µ2 < 0 and the inequality will
reverse, that is, β1(µ2) < β2(µ2).
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UMPU tests
• the problem is that the class of tests is too wide: we may restrict the class of tests to search

among α-level unbiased tests.

• test 3: reject H0 if X̄n > θ0 +
σzα/2√

n
or X̄n > θ0 −

σzα/2√
n

• it happens that this test is the UMP test

• note that there is a loss of power compared to tests 1 and 2 at some parameter points
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union-intersection tests
• in some situations, tests for complicated null hypotheses can be developed from tests for simpler

null hypotheses

• suppose that the null hypothesis can be conveniently expressed as

H0 : θ ∈
⋂
γ∈Γ

Θγ

and there are tests available for each testing problem H(γ)
0 : θ ∈ Θγ

0 versus H(γ)
1 : θ ∈ Θγ

1 , with
rejection regions {x : Tγ(x) ∈ Rγ}

• if any hypothesis H(γ)
0 is rejected, then H0 must also be rejected. Then the rejection region for the

UI test is
⋃

γ∈Γ{x : Tγ(x) ∈ Rγ}

• in some situations, it is possible to simplify the expression for the rejection region of a
union-intersection test ⋃

γ∈Γ

{
x : Tγ(x) ∈ Rγ

}
=

{
x : sup

γ∈Γ
Tγ(x) > c

}
and hence T (x) = supγ∈Γ Tγ(x)
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Gaussian union-intersection tests

• example: let X1, . . . ,Xn ∼ iid N(µ, σ2) and consider testing H0 : µ = µ0 against H1 : µ ̸= µ0

• we may write the null hypothesis as the intersection of HL
0 : {µ : µ ≤ µ0} and HU

0 : {µ : µ ≥ µ0}

LR tests

{
reject HL

0 : µ ≤ µ0 if
√
n X̄n−µ0

Sn
≥ tL

reject HU
0 : µ ≥ µ0 if

√
n X̄n−µ0

Sn
≤ tU

• union-intersection test

reject H0 : µ = µ0 if tL ≤
√
n
X̄n − µ0

Sn
or

√
n
X̄n − µ0

Sn
≤ tU ,

which coincides with the two-sided LR t-test if tL = −tU ≥ 0 and then we can write

reject H0 : µ = µ0 if
√
n
|X̄n − µ0|

Sn
≥ tL

which is also called the two-sided t-test

62 / 82



union-intersection test and Neyman-Pearson lemma
• let X1, . . . ,Xn ∼ iid N(µ, 1). From the NP lemma, the α-level uniformly most powerful test for
H0 : µ = µ0 against H1 : µ = µ1, µ1 < µ0, has rejection region

R =

{
x : x̄n < µ0 −

σzα√
n

}

• now consider testing H0 : µ = µ0 against H1 : µ < µ0. We can write

H(γ)
0 : µ = µ0

H(γ)
1 : µ = γ

with γ ∈ Γ = {γ : γ < µ0, γ ∈ R}, which is a union-intersection test.

• notice that, for each of these tests, the rejection region R is unchanged. It follows that the
rejection region for the UI test is ⋃

γ∈Γ

{x : Tγ(x) ∈ Rγ} = R

and also supγ∈Γ Tγ(x) = T (x).

• note that each of those tests are the UMP test individually.. it follows that rejection region R also
constitutes the UMP for the composite hypothesis!
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intersection-union tests

• suppose that we may conveniently express the null as a union

H0 : θ ∈
⋃
γ∈Γ

Θγ

and there are tests available for each testing problem H(γ)
0 : θ ∈ Θγ

0 versus H(γ)
1 : θ ∈ Θγ

1 , with
rejection regions {x : Tγ(x) ∈ Rγ}

• if all hypotheses H(γ)
0 is rejected, then H0 must be rejected. The rejection region for the IU test is⋂

γ∈Γ{x : Tγ(x) ∈ Rγ}

• in some situations, it is possible to simplify the expression for the rejection region of a
intersection-union test ⋂

γ∈Γ

{
x : Tγ(x) ∈ Rγ

}
=

{
x : inf

γ∈Γ
Tγ(x) ≥ c

}
and hence T (x) = infγ∈Γ Tγ(x)
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p-values

• so far, a statistical test would report only whether H0 got accepted or rejected at a certain
α-level, but not by how much

• p-values are another way of conveying information about the outcome of the statistical test: what
is the minimum α such that H0 is rejected?

H0 rejected α = 0.10
H0 rejected at α = 0.05

H0 not rejected at α = 0.01

so lower values are indicative of "more convincing" rejections

• definition: the p-value is the smallest significance level such that x is in the rejection region

p(x) = inf{α : x ∈ Rα}

where Rα is the rejection region at significance level α
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p-values

• example: take our well-known right-tailed rejection region

Rα =

{
x :

x̄n − µ0

σ/
√
n

> z1−α

}
for the test of H0 : µ ≤ µ0 against H1 : µ > µ0. Note that{

x :
x̄n − µ0

σ/
√
n

> z1−α

}
=

{
x : 1 − Φ

(
x̄n − µ0

σ/
√
n

)
> 1 − α

}
for a given x , the p-value is the infimum α such that 1 − Φ

(
x̄n−µ0
σ/

√
n

)
> 1 − α holds,

p = Φ

(
x̄n − µ0

σ/
√
n

)

66 / 82



Contents
1. basic notions in hypothesis testing

1.1 statistical hypothesis

2. finding and evaluating tests

2.1 likelihood ratio test

2.2 most powerful tests

2.3 restricting the class of UMP test

2.4 intersection-union and union-intersection tests

2.5 p-values

3. inference and set estimation

3.1 inverting a test statistic

3.2 evaluating interval estimators and optimality

4. exercises

66 / 82



Contents
1. basic notions in hypothesis testing

1.1 statistical hypothesis

2. finding and evaluating tests

2.1 likelihood ratio test

2.2 most powerful tests

2.3 restricting the class of UMP test

2.4 intersection-union and union-intersection tests

2.5 p-values

3. inference and set estimation

3.1 inverting a test statistic

3.2 evaluating interval estimators and optimality

4. exercises

66 / 82



inference and set estimation

• we would like to make statements of the form θ ∈ C(x), where the set estimate C(x) ⊂ Θ
depends only on the realization of the sample

• if θ is a scalar, C(x) will typically be an interval

• our goal is to build intervals in which the true parameter lies with a certain probability
P
(
µ = X̄n

)
= 0 point estimation

P (µ ∈ C(X )) ≥ 0 interval estimation

• definition: an interval estimate of a parameter θ ∈ Θ ⊂ R is any pair of statistics L(x) and U(x)
that satisfy L(x) ≤ U(x) for all x ∈ SX , whereas the random interval [L(X ),U(X )] corresponds to
the interval estimator

• it is possible that L(X ) = −∞ or U(X ) = ∞

• we will see soon that this topic is very much connected to hypothesis testing
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interval coverage
• example: if X1, . . . ,X4 ∼ iid N(µ, 1), [X̄4 − 1, X̄4 + 1] is a interval estimator of µ. The probability

that µ ∈ C(x) is

P
(
µ ∈ [X̄4 − 1, X̄4 + 1]

)
= P(X̄4 − 1 ≤ µ ≤ X̄4 + 1) = P(|X̄4 − µ| ≤ 1)

= P
(
|X̄4 − µ|
1/

√
4

≤ 1
1/

√
4

)
= P(|Z | ≤ 2) = 0.9544

• definition: the probability that the interval estimator [L(X ),U(X )] of θ includes the true
parameter value θ is the coverage probability

• definition: the confidence coefficient of [L(X ),U(X )] is the infimum of the coverage probabilities,
namely, infθ∈Θ Pθ(θ ∈ [L(X ),U(X )])

• since θ is unknown, the best we can offer is the infimum coverage probability, that is to say, the
confidence coefficient

• keep in mind that the random quantity is the interval L(X ) and U(X ), but not θ, which is
unknown but a fixed quantity

− in the example above, the bounds depended on X̄n, which is a random quantity
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scale uniform interval estimator

• example: let X1, . . . ,Xn ∼ iid U(0, θ) and consider [aX(n), bX(n)] with 1 ≤ a < b. The coverage
probability is

Pθ

(
aX(n) ≤ θ ≤ bX(n)

)
= P

(
θ/b ≤ X(n) ≤ θ/a

)
and cdf of X(n) is

P
(
X(n) ≤ k

)
=

n∏
i=1

P (Xi ≤ k) =
n∏

i=1

∫ k

0

1
θ

dx

=
n∏

i=1

k

θ
=

[
k

θ

]n
P
(
θ/b ≤ X(n) ≤ θ/a

)
=

[
θ/a

θ

]n
−
[
θ/b

θ

]n
= a−n − b−n
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scale uniform interval estimator

• example: (cont’d) consider alternatively [X(n) + c,X(n) + d ]

Pθ(X(n) + c ≤ θ ≤ X(n) + d) = Pθ

(
θ − d ≤ X(n) ≤ θ − c

)
=

[
θ − c

θ

]n
−
[
θ − d

θ

]n
= (1 − c/θ)n − (1 − d/θ)n

which depends on θ, with confidence coefficient zero (θ → ∞)
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interval estimator for a Gaussian sample mean

• example: if X1, . . . ,Xn ∼ iid N(µ, σ2), σ2 known. Consider testing H0 : µ = µ0 against
H1 : µ ̸= µ0. We would then typically use the rejection region

R =

{
X : |X̄n − µ0| > zα/2

σ√
n

}
since test has size α, P(x ∈ Rc |µ = µ0) = 1 − α. But

Rc =

{
X : |X̄n − µ0| < zα/2

σ√
n

}
=

{
X : −zα/2

σ√
n
< X̄n − µ0 < zα/2

σ√
n

}
=

{
X : −X̄n − zα/2

σ√
n
< −µ0 < −X̄n + zα/2

σ√
n

}
=

{
X : X̄n − zα/2

σ√
n
< µ0 < X̄n + zα/2

σ√
n

}
i.e., there is a probability 1 − α that µ0 is in the interval above.
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interval estimator for a Gaussian sample mean

• there is a clear correspondence between confidence sets and tests

− the acceptance region is a set in the sample space such that H0 : µ = µ0 is not rejected. It is a
function of µ0, but not data

A(µ0) =

{
x : µ0 − zα/2

σ
√
n

≤ x̄n ≤ µ0 + zα/2
σ
√
n

}

− the confidence interval is set with plausible values of the parameters. It is a function of data, but not
parameters

C(x) =

{
µ : x̄n − zα/2

σ
√
n

≤ µ ≤ x̄n + zα/2
σ
√
n

}

− therefore

x ∈ A(µ0) ⇐⇒ µ0 ∈ C(x)
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interval estimator for a Gaussian sample mean
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rejection regions and confidence intervals

• this notion can be made formal

• theorem (CB 9.2.2): for each θ0 ∈ Θ, let A(θ0) be the acceptance region of level α of H0 : θ = θ0.
For each x ∈ X , define

C(x) = {θ0 : x ∈ A(θ0)}

then the random set C(X ) is a 1 − α confidence set. Conversely, let C(X ) be a 1 − α confidence
set. Define

A(θ0) = {x : θ0 ∈ C(x)}

then A(θ0) is the acceptance region of a level-α test with H0 : θ = θ0.
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rejection regions and confidence intervals

• proof: A(θ0) is acceptance region of a level-α test so Pθ0(X /∈ A(θ0)) ≤ α and
Pθ0(X ∈ A(θ0)) ≥ 1 − α. Then

Pθ(θ ∈ C(X )) = Pθ(X ∈ A(θ)) ≥ 1 − α

so C(X ) is a 1 − α confidence set.

• the type-I error probability for H0 : θ = θ0 with acceptance region A(θ0) is

Pθ0(X /∈ A(θ0)) = Pθ0(θ0 /∈ C(X )) ≤ α

so this is a α-level test. ■
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how to gauge performance

• two relevant quantities:

− size of the interval: length or volume

− coverage probability: probability that true parameter is in the set

• the latter is generally a function of the parameter, so we usually take the infimum over the
parameter space.

− this is the confidence coefficient

• we will soon see that performances of tests and set estimates are closely connected
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how to gauge performance

• question: we can optimize the length of an interval while keeping coverage probability constant at
1 − α?

• example: take X1, . . . ,Xn iid N(µ, σ2), σ known. Then

P
(
a ≤ X̄n − µ

σ/
√
n

≤ b

)
= P (a ≤ Z ≤ b) = 1 − α

gives the confidence interval {
µ : x̄n − b

σ√
n
≤ µ ≤ x̄n − a

σ√
n

}

• what choice of a and b minimizes length while keeping 1 − α coverage?

− minimize b − a with P(a ≤ Z ≤ b) = 1 − α
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how to gauge performance

a b P(Z < a) P(Z > b) b − a

-1.34 2.33 .09 .01 3.67
-1.44 1.96 .075 .025 3.40
-1.65 1.65 .05 .05 3.30

• table suggests that a = −b = 1.65 is the optimum

• it is not a requirement that the interval should symmetric: this is a consequence of the symmetry
of the normal distribution
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how to gauge performance

• theorem (CB 9.3.2): let f (x) be a unimodal pdf. If an interval [a, b] satisfies

(i)
∫ b
a f (x)dx = 1 − α

(ii) f (a) = f (b) > 0

(iii) a ≤ x∗ ≤ b, where x∗ is the mode of f (x)

then [a, b] is the shortest interval among all intervals such that
∫ b

a
f (x)dx = 1 − α.

proof
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optimality

• since there is a correspondence between confidence sets and hypothesis tests, there must be some
correspondence between their optimalities

• consider a situation where X ∼ f (x |θ) and construct a confidence set C(X ) for θ by inverting an
acceptance region A(θ)

• definition: the probability of true coverage is Pθ(θ ∈ C(X ))

• definition: the probability of false coverage is the probability that θ′ is covered when θ is the true
parameter

Pθ(θ
′ ∈ C(X )) if θ′ ̸= θ

• definition: the 1 − α confidence set that minimizes the probability of false coverage is called the
uniformly most accurate confidence set (UMA)
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optimality

• theorem (CB 9.3.5): let X ∼ f (x |θ) where θ is real-valued. For each θ0 ∈ Θ, let A∗(θ0) be the
UMP level-α acceptance region of a test of H0 : θ = θ0 versus H1 : θ > θ0. Let C∗(x) be the
1 − α confidence set formed by inverting the UMP acceptance regions. Then, for any other
confidence region C(X ),

Pθ(θ
′ ∈ C∗(X )) ≤ Pθ(θ

′ ∈ C(X ))

that is, C∗(X ) is a UMA lower confidence bound.

• proof: let θ′ < θ. Then

Pθ

(
θ′ ∈ C∗(X )

)
= Pθ

(
X ∈ A∗(θ′)

)
UMP

≤ Pθ

(
X ∈ A(θ′)

)
= Pθ

(
θ′ ∈ C(X )

)
■
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Reference:

• Casella and Berger, Ch. 8 and 9

Exercises:

• 8.1–8.3, 8.5–8.8, 8.12–8.19, 8.22(a), 8.27, 8.28, 8.32, 8.37, 8.51

• 9.1-9.14, 9.16-9.17, 9.23, 9.34-9.42, 9.47-9.52
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how to gauge performance

• proof: let [a′, b′] be any interval with b′ − a′ < b − a. There are two cases: b′ ≤ a and b′ > a. If
b′ ≤ a, then a′ ≤ b′ ≤ a ≤ x∗ and∫ b′

a′
f (x)dx ≤ f (b′)(b′ − a′)

since x ≤ b′ ≤ x∗ ⇒ f (x) ≤ f (b′). Now,

f (b′)(b′ − a′) ≤ f (a)(b′ − a′)

since f (x) is nondecreasing for b′ ≤ a ≤ x∗ and

f (a)(b′ − a′) < f (a)(b − a) ≤
∫ b

a

f (x)dx = 1 − α

since, using (ii) and (iii), f (x) ≥ f (a) for a ≤ x ≤ b. So [a′, b′] cannot have the same coverage
probability. Complete argument for b′ ≤ a case. ■
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